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Abstract. We report on a next-to-leading order QCD calculation of the cross section and the spin 
asymmetry for isolated large-pT prompt photon production in collisions of transversely polarized 
protons. Corresponding measurements may be used at RHIC to determine the transversity parton 
distributions of the proton. 

The partonic structure of spin-1/2 targets at the leading-twist level is characterized 
by the unpolarized, longitudinally polarized, and transversely polarized distribution 
functions f, A f , and 6 f, respectively [ 1, 21. These non-perturbative parton densities 
can be probed universally in a multitude of inelastic scattering processes, for which it is 
possible to separate (“factorize”) the long-distance physics relating to nucleon structure 
from a partonic short-distance scattering that is amenable to QCD perturbation theory. 

In contrast to the f and A f, the “transversity” lstributions 6 f are unmeasured thus 
far. They are presently the focus of much experimental activity. For example, informa- 
tion should soon be gathered from transversely polarized proton-proton collisions at the 
BNL Relativistic Heavy Ion Collider (RHIC) [3]. The potential of RHIC in accessing 
transversity in measurements of transverse double-spin asymmetries Am was examined 
in [4] for high transverse momentum p~ prompt photon and jet production (for earlier 
studies, see [5,6,7]). All of these calculations were performed only at the lowest order 
(LO) approximation for the underlying partonic hard-scattering. As is well known, next- 
to-leading order (NLO) QCD corrections are generally indispensable in order to arrive 
at a firmer theoretical rediction for hadronic cross sections and spin asymmetries. The 

recently completed [8]; here we give a brief report on those results. 
Interesting new technical questions arise beyond the LO in case of transverse polar- 

ization. Unlike for longitudinally polarized cross sections where the spin vectors are 
aligned with momentum, transverse spin vectors specify extra spatial directions, giving 
rise to non-trivial dependence of the cross section on the azimuthal angle of the observed 
photon. As is well-known [2], forATT this dependence is always of the form cos(2@), if 
the z axis is defined by the direction of the initial protons in their center-of-mass system 
(c.m.s.), and the spin vectors are taken to point in the fx direction. Integration over the 
photon’s azimuthal angle is therefore not appropriate. On the other hand, standard tech- 
niques developed in the literature for performing NLO phase-space integrations usually 
rely on integration over the full azimuthal phase space, and also on the choice of par- 

NLo calculation forATT B for isolated high-pT prompt photon production, pp -+ yx, was 
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' ticular reference frames that are related in complicated ways to the one just specified. 
In [8], a new general technique was introduced which facilitates NLO calculations with 
transverse polarization by conveniently projecting on the azimuthal dependence of the 
matrix elements in a covariant way. The key point here is to recognize that the the factor 
cos(2Q) in the cross section actually results from the covariant expression 

with sa,sb the initial spin vectors and pY the photon momentum. 3 reduces to cos(2Q) 
in the hadronic c.m.s. frame. One may thus integrate over all phase space without 
obtaining a vanishing result if one simply multiplies the squared matrix element by 
the factor 3(pY,sa ,sb) .  Integration over terms involving the s,,s~ can be carried out 
in a covariant way by using standard tensor decompositions. After this step, there are 
no scalar products involving the Si left in the squared matrix element. For the ensuing 
integration over all azimuthal phase space we can now employ techniques familiar from 
the corresponding calculations in the unpolarized and longitudinally polarized cases. 

At NLO, there are two subprocesses that contribute for transverse polarization, qq + 
yX and qq -+ yX. The first one is already present at LO, where X = g. At NLO, one 
has virtual corrections to the Born cross section (X = g), but also 2 + 3 real emission 
diagrams, with X = gg + qq+ q'$. For the second subprocess, X = qq. 

Owing to the presence of ultraviolet, infrared, and collinear singularities at interme- 
diate stages of the calculation, it is necessary to introduce a regularization. Our choice is 
dimensional regularization, that is, the calculation is performed in d = 4 - 2~ space-time 
dimensions. Ultraviolet poles in the virtual diagrams are removed by the renormaliza- 
tion of the strong coupling constant. Infrared singularities cancel in the sum between 
virtual and real-emission diagrams. After this cancelation, only collinear poles are left. 
These result for example from a parton in the initial state splitting collinearly into a pair 
of partons, corresponding to a long-distance contribution in the partonic cross section. 
From the factorization theorem it follows that such contributions need to be factored into 
the parton hstribution functions. In our calculations [SI, we have imposed on the photon 
the isolation cut proposed in [9]. All jinal-state collinear singularities then cancel. The 
isolation constraint was implemented analytically by assuming a narrow isolation cone. 

For our numerical predictions we model the 6f by assuming that the Soffer inequality 
[lo] is saturated at some low input scale N 0.6 GeV. For p > yo the transversity den- 
sities 6 f ( x ,  p )  are then obtained by solving the appropriate QCD evolution equations. 
Our numerical predictions apply for prompt photon measurements with the PHENIX de- 
tector at RHTC. Figure l shows our results for the transversely polarized prompt photon 
production cross sections at NLO and LO for two different c.m.s. energies. The lower 
part of the figure displays the so called "K-factor", K = d 6 0 ~ ' / d 6 0 ~ ' .  One can see 
that the NLO corrections are somewhat smaller for fi = 500 GeV and increase with p ~ .  
The shaded bands in the upper panel of Fig. 1 indicate the uncertainties from varying the 
factorization and renormalization scales in the range p T / 2  2 p~ = p~ 5 2pT. The solid 
and dashed lines are always for the choice where all scales are set to p ~ ,  and so is the 
K factor underneath. One can see that the scale dependence becomes much weaker at 
NLO, as expected. The corresponding spin asymmetries A;T = d 6 x r / d o  may be found 
in Fig. 2 of Ref. [8]; they are generally smaller at NLO than at LO. 
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FIGURE 1. Predictions for the transversely polarized prompt photon production cross sections at LO 
and NLO, for fi = 200 and 500 GeV. The LO results have been scaled by a factor of 0.01. The shaded 
bands represent the theoretical uncertainty if p~ (= p ~ )  is varied in the range p ~ / 2  5 p~ 5 2 p ~ .  The 
lower panel shows the ratios of the NLO and LO results for both c.m.s. energies. 
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